Hyperelastic pressure sensing

نویسندگان

  • Yong-Lae Park
  • Carmel Majidi
  • Rebecca Kramer
  • Phillipe Bérard
  • Robert J Wood
چکیده

A hyperelastic pressure transducer is fabricated by embedding silicone rubber with microchannels of conductive liquid eutectic gallium–indium. Pressing the surface of the elastomer with pressures in the range of 0–100 kPa will deform the cross-section of underlying channels and change their electric resistance by as much as 50%. Microchannels with dimensions as small as 25 μm are obtained with a maskless, soft lithography process that utilizes direct laser exposure. Change in electrical resistance is measured as a function of the magnitude and area of the surface pressure as well as the cross-sectional geometry, depth and relative lateral position of the embedded channel. These experimentally measured values closely match closed-form theoretical predictions derived from plane strain elasticity and contact mechanics.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Nonlinear analysis of radially functionally graded hyperelastic cylindrical shells with axially-varying thickness and non-uniform pressure loads based on perturbation theory

In this study, nonlinear analysis for thick cylindrical pressure vessels with arbitrary variable thickness made of hyperelastic functionally graded material properties in nearly incompressible state and clamped boundary conditions under non-uniform pressure loading is presented. Thickness and pressure of the shell are considered in axial direction by arbitrary nonlinear profiles. The FG materia...

متن کامل

Nonlinear analytical solution of nearly incompressible hyperelastic cylinder with variable thickness under non-uniform pressure by perturbation technique

In this paper, nonlinear analytical solution of pressurized thick cylindrical shells with variable thickness made of hyperelastic materials is presented. The governing equilibrium equations for the cylindrical shell with variable thickness under non-uniform internal pressure are derived based on first-order shear deformation theory (FSDT). The shell is assumed to be made of isotropic and homoge...

متن کامل

Stabilized four-node tetrahedron with nonlocal pressure for modeling hyperelastic materials

Non-linear hyperelastic response of reinforced elastomers is modeled using a novel three-dimensional mixed finite element method with a nonlocal pressure field. The element is unconditionally convergent and free of spurious pressure modes. Nonlocal pressure is obtained by an implicit gradient technique and obeys the Helmholtz equation. Physical motivation for this nonlocality is shown. An impli...

متن کامل

A Elastic and Hyperelastic Material Model of Joint Cartilage - Calculation of the Pressure Dependent Material Stress in Joint Cartilage

In this paper we introduce a elastic and hyperelastic model to describe the pressure dependent material stress in joint cartilage. We used the pressure dependent E-modulus E = f(s) to calculate the material stress. E = f(s) is a degree 4 polynomial [1]. The indentor was pressed 0.4 mm into the tissue. The results show that the maximal stress at the contact zone between indentor and cartilage ac...

متن کامل

Structural Mechanics Approach to Investigate the Hyperelastic Mechanical Behavior of Single and Multi-wall Carbon Nanotubes

In the current research, a three-dimensional finite element model was considered to predict the mechanical behavior of Single Wall (SWCNTs) and Multi Wall Carbon Nanotubes (MWCNTs). Assuming the nonlinear elastic behavior of C-C bond in large strains, hyperelastic models were considered. Literature review revealed that the material parameters of the hyperelastic models have been determined from...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2010